TED UNIVERSITY

Faculty of Engineering

Department of Computer Engineering

High Level Design Report

CMPE 491 — Senior Design Project I
by
Berk Kaya
[Than Un
Irem Ayca Ugankale
Alperen Aktas

Onur Turan



1. Introduction

1.1 Purpose of the system
1.2 Design goals

1.3 Definitions, acronyms, and abbreviations

1.4 Overview

2. Proposed software architecture

2.1 Overview

2.2 Subsystem decomposition
2.2.1 Vision Subsystem

2.2.2 Control Subsystem

2.2.3 Data Management Subsystem
2.2.4 UI Subsystem

2.3 Hardware/software mapping...

o 0 00 LI NSNS N R W W W

2.4 Persistent data management
2.5 Access control and security

2.6 Global software control

2.7 Boundary conditions
3. Subsystem services

3.1 Vision Services

3.2 Control Services

3.3 Data Services

3.4 Interface Services (UI Service)

4. Glossary
5. References

e e e T = T . T ey e
W W NN NNNBBS)OS



1. Introduction

1.1 Purpose of the system

The primary purpose of the Figion project is to automate and modernize the quality control
process for dried figs, specifically targeting the detection of aflatoxin contamination. Currently,
this process relies on manual inspection under UV light in dark rooms, which is subjective,
prone to human error due to fatigue, and inefficient for high-volume production lines.

Figion aims to replace this manual workflow with an Al-driven, computer vision solution that
operates in real-time on the production line. By utilizing deep learning algorithms to analyze
fluorescence in UV-illuminated images, the system provides an objective, fast, and
non-destructive screening method. The system is designed to serve quality assurance managers
and production line operators by ensuring food safety standards are met while creating a
verifiable digital audit trail of the inspection process.

1.2 Design goals

The design of the Figion system is driven by strict industrial and safety requirements. The key
design goals are defined as follows:

Real-Time Performance (Latency): The system must match the throughput of manual
processing pipelines. The total processing time—including image capture, inference, and result
display—must not exceed 1 second per fig, allowing for a processing speed comparable to
approximately 175 kg/hour.

High Reliability (Recall Priority): Given the public health implications of aflatoxin, the
system prioritizes minimizing false negatives. The design goal is to achieve a Recall rate of at
least 95% for the "Aflatoxin" class, ensuring contaminated products do not pass through the
screening.

Portability and Edge Computing: The system is designed to operate independently of cloud
resources to ensure stability and speed. It must run effectively on standard laptop CPUs or
integrated GPUs, utilizing edge computing principles to avoid the need for expensive,
specialized hardware.

Data Integrity and Traceability: Unlike the current transient manual inspection, the system
must act as a traceability hub. It is designed to automatically archive the UV image of every
scanned product alongside its classification decision in a structured format (e.g., CSV),
enabling retrospective analysis and model retraining.



Usability: The user interface must be intuitive enough for operators to learn the scanning
process within a short training period (under 30 minutes).

1.3 Definitions, acronyms, and abbreviations

Aflatoxin: A family of toxic and carcinogenic compounds produced by certain fungi found on
agricultural crops such as dried figs. In the context of this project, it refers to the target
contamination that exhibits fluorescence under UV light, which the system aims to detect
without chemical analysis.

UV (Ultraviolet): Electromagnetic radiation with a wavelength shorter than that of visible
light. The system utilizes high-intensity UV illumination in a dark environment to expose
fluorescent contamination on the surface of dried figs, serving as the primary method for
image-based detection.

HPLC (High-Performance Liquid Chromatography): An advanced, definitive laboratory
analysis method used to separate, identify, and quantify components in a mixture. It serves as
the "ground truth" for confirming aflatoxin presence but is a destructive and slow process
applied only to random samples, unlike the project's non-destructive total scanning approach.

Recall and Precision: The two critical performance metrics for the AI model:

e Recall (Sensitivity): Measures the percentage of actual aflatoxin-contaminated figs
correctly identified by the system. A minimum of 95% is required to meet public health
obligations.

e Precision: Measures the percentage of figs labeled as "contaminated" that are actually
contaminated. A minimum of 85% is targeted to prevent the financial loss associated with
discarding healthy products (false positives).

Session and Batch:

e Session: A specific period of scanning activity initiated and ended by the operator. Starting a
new session resets counters and creates a new directory for archiving images and logs.

e Batch (Batch ID): A unique identifier assigned to a specific group or lot of dried figs being
processed. This ID is used to tag exported CSV reports and ensure traceability of the product
line.

Inference: The process where the pre-trained Deep Learning model analyzes live image data to
make a classification decision ("Healthy" or "Contaminated"). In this project, inference is
performed in real-time on standard edge hardware (Laptop CPU/GPU) without relying on cloud
services.



Latency: The time delay between capturing an image of a fig and displaying the classification
result on the interface. To match the manual processing speed of approximately 175 kg/hour,
the system requires a latency of less than 1 second per fig.

1.4 Overview

The Figion system is a solution designed to operate in an industrial environment, integrating
hardware and software. The system hardware consists of a cabinet isolated from external light
(dark room), a conveyor belt that transports products, a 365nm UV LED array that illuminates
the figs, and a high-resolution USB camera that captures images. The software component is a
desktop application that manages this hardware, processes the images, and provides user
interaction.

The software architecture is designed as a hybrid application of Pipeline and Event-Driven
architectural patterns. The image processing workflow (Capture -> Pre-processing -> Inference
-> Post-processing -> Recording) operates with a pipeline logic that follows a strict sequence;
meanwhile, the user interface, hardware status monitoring, and reporting tasks are handled in an
event-driven manner.

The technology stack selection was determined by the project constraints (standard laptop
hardware, high speed requirement). For object detection, the YOLOv11ln (Nano) model was
chosen, which offers higher efficiency and speed on the CPU compared to previous
generations. For the user interface, a native desktop application framework was selected
because Python-based web frameworks (such as Streamlit) cause latency and redraw issues in
video streaming, whereas this approach enables the creation of hardware-accelerated,
high-performance desktop interfaces. For the data storage layer, the SQLite database will be
used, which does not require server setup, is file-based, but offers high reliability (ACID).
Concurrency management is designed using the Producer-Consumer pattern to maintain the
fluidity of the interface and prevent data loss, with camera and artificial intelligence operations
running on separate threads.



2. Proposed software architecture

2.1 Overview

The software architecture of the Figion system is based on the Layered Architecture principle to
manage complexity, ensure independent development of components, and offer ease of
maintenance. The system is divided into three main logical layers according to their functional
responsibilities:

Presentation Layer (View): The point where the user interacts with the system. Displaying live
video feed, visualizing detection results (class labels, confidence scores), reporting system status
(ready, scanning, error), and receiving operator commands (Start/Stop) are the responsibilities of this
layer.

Application Logic Layer (Controller/Service): Functions as the brain of the system.
Management of the image processing pipeline, execution of the AI model, making
algorithmic decisions (threshold control, etc.), and coordination of hardware components
(camera, relay) take place here. This layer acts as a bridge between the Presentation Layer
and the Data Layer.

Data and Infrastructure Layer (Model): Manages the system's persistent data storage
operations and low-level hardware communication. Writing image files to disk, saving
metadata to the SQLite database, creating CSV reports, and communication with
cameras/relays at the driver level are provided in this layer.

Communication between these layers, especially between Presentation and Application layers,
is designed in an asynchronous structure using Qt's Signal & Slot mechanism. In this way,
while Al operations requiring intensive processing power are carried out in the background, the

user interface can continue to work without freezing (non-blocking).



Pt
| |
_

.-/ \-\.
Operator

Uses

[Presentatinn Layer {UI]\
.
Ul

Sends Frames Returns Results » Sends Commands \Status/ACK

|Applicatiop Logic Layer\
[ | ~

‘ Hardware Manager

‘ Vision Processor

Logs Results
Reads/Writes

Data Lgyer\
I

[_EéLE BE__]

Figure 1: High-Level System Architecture Diagram illustrating the interaction between the User, Ul,
Logic, and Data layers.

2.2 Subsystem decomposition

The system is divided into four main subsystems to ensure functional integrity and isolate
complexity: Vision Subsystem, Control Subsystem, Data Management Subsystem, and User
Interface Subsystem.



2.2.1 Vision Subsystem

This subsystem, the most critical component of Figion, is responsible for collecting and
analyzing visual data.

Image Acquisition Module: Connection with the USB camera is established using the
cv2.VideoCapture class of the OpenCV library. This module pulls raw frames from the camera.
It allows programmatic adjustment of camera parameters such as exposure, gain, and white
balance so that fluorescent glow can be clearly seen in the dark room environment. Raw frames
are forwarded to a Queue structure for processing.

Preprocessing Module: Converts the captured image into the format expected by the Al
model. These operations include:

e Resizing: Reducing the image to 640x640 pixels (or according to the selected model size),
which is the model's input size.

e Color Space Conversion: Conversion from OpenCV's default BGR format to the RGB
format the model was trained on.

e Normalization: Scaling pixel intensity values from the [0, 255] range to [0, 1].

Inference Engine: This module hosts the trained YOLOv1ln model. The model converted
from .pt (PyTorch) format to ONNX (Open Neural Network Exchange) format, which runs
faster in production environments, is used. Optimized inference on CPU is performed using the
ONNX Runtime library. Research shows that YOLOv11 runs 20-30% faster on CPU compared
to YOLOvVS and offers similar or higher accuracy (mAP) with fewer parameters. This is a
critical advantage for laptop hardware constraints.

Post-processing Module: Converts raw tensor outputs returning from the model into
meaningful data.

e Non-Maximum Suppression (NMS): Eliminates multiple overlapping boxes generated for
the same object.

e Thresholding: Filters predictions below the determined confidence score threshold to meet
the 95% Recall target specified in the Specifications Report.

2.2.2 Control Subsystem
Responsible for the management of physical hardware and the general status of the system.

Hardware Controller: Provides communication with the relay card controlling UV LED light
sources. Generally, relay cards emulating Serial Port (COM) over USB (e.g., with CH340 chip)
will be used. Using Python pyserial or pyhid-usb-relay libraries, signals are sent to turn on
lights when scanning starts (ON command) and turn them off when finished (OFF command).



This module also checks whether hardware (Camera, Relay) is connected at system startup
(Health Check).

State Manager: A Finite State Machine (FSM) structure managing the current state of the
system (e.g., Initializing, Ready, Scanning, Paused, Error). It controls state transitions based on
triggers from the user interface (Button press) and prevents invalid operations (e.g., starting
scanning when there is no camera).

2.2.3 Data Management Subsystem
Manages the permanent storage of analysis results and images.

Session Manager: Creates a unique "Batch ID" for each new scanning operation (e.g.,
BATCH 20231215 001). Manages and resets session-based counters (Total, Defective, Clean).

Image Archiver: Ensures images are saved to disk. Since I/O operations are slow, this module
runs in a separate thread (Worker Thread). Images are saved according to the determined folder
structure (./data/images/YYYY-MM-DD/Batch ID/) and naming convention
(Fig_ID_Result.jpg).

Database Handler: The DAO (Data Access Object) layer managing interaction with the
SQLite database. It writes data generated for each fig (Time, ID, Result, Confidence Score, File
Path) to the database as an atomic transaction. It also hosts functions that convert records in the
database to CSV format upon request (Export button).

2.2.4 UI Subsystem
The graphical interface that allows the operator to monitor and control the system.

Video Viewer: Displays images received from the camera with model predictions (bounding
box, label) drawn on them in real-time. High-performance rendering is provided using QLabel
or QGraphicsView widgets.

Control Panel: Contains Start/Stop button, settings menu, and status indicators.
Statistics Panel: Shows instantly updated counters (Total, Aflatoxin-infected, Clean, Ratio).

Session Log: Shows the list of recently scanned products in a sliding window using
QTableWidget.



2.3 Hardware/software mapping

The Figion system is designed to run on standard computer hardware without requiring
expensive servers or cloud connections. The system creates a bridge between physical devices
(like the camera and lights) and the software components running on the user's laptop. This
mapping ensures that the hardware resources are used efficiently to meet the speed
requirements.

As shown in Figure 2, the system consists of three main hardware elements connected to the
central computer:

Laptop / PC: This is the heart of the system. It runs the Figion Application, processes the Al
model using the CPU, and displays the user interface.

USB Camera: It captures high-resolution images of the figs under UV light and sends them to
the software via a USB connection.

UV Lighting & Relay: The software sends simple "On/Off" commands to a USB Relay, which
controls the electrical power of the UV lights in the dark box.

To ensure the application runs smoothly and does not freeze, we map different software tasks to
different computing resources. The User Interface (UI) runs on the main processor thread to
stay responsive to clicks. The AI Analysis (YOLO model) runs on a separate background
thread (worker) so it does not stop the video flow. Finally, saving images to the disk is handled
separately to prevent delays during saving.

Workstation (Laptop/PC)

Figion Application M

i

< > |
_SQLite DB | Ul Thread Al Worker Thread ‘
il Pl i | J

!

USB (Serial Comm)

USB (Video Stream)

I I
\ DarliBox Environment

Power Control -
USB Camera USB Relay | UV LED Systemn

Figure 2: Deployment Diagram showing the mapping of software components to hardware nodes.



2.4 Persistent data management

The system needs to store two types of data permanently: the inspection results (text data) and
the actual pictures of the figs (image data). This ensures that factory managers can review past
production batches and generate quality reports.

2.4.1 Database System

We use SQLite as our database solution. It is a simple, file-based database that does not require
installing a separate server application. It is very reliable and protects data even if the power
goes out suddenly.

As illustrated in Figure 3, the database contains two main tables:

e Sessions Table: Stores general information about a work batch, such as when it started,
when it ended, and the total number of figs processed.

e Inspections Table: Stores the detailed result for every single fig. This includes the
timestamp, the decision (Healthy vs. Aflatoxin), the confidence score of the Al, and the link
to the saved image file.

® Sessions

e id : Integer «PKs

batch _id : String
start_time : DateTime
end time : DateTime
total count: Integer
defect count : Integer

:l:

|
icontains many

A

® Inspections

s id : Integer «PKx»

s session_id : Integer «FK=»
timestamp : DateTime
decision : 5tring
confidence score : Float
image_path : String

Figure 3: Entity-Relationship Diagram (ERD) representing the database schema for Sessions and
Inspections.



2.4.2 Image Storage Since storing thousands of images directly inside a database can slow down
the system, we save the actual image files directly to the computer's hard drive (File System).
The database only stores the "address" (file path) of these images.

To keep files organized and easy to find manually, the system automatically creates folders based
on the date and the batch ID. A typical folder structure looks like this:

e Data/
o Images/
m 2024-05-20/ (Date)
m Batch_001/ (Session ID)
m Fig_101_Healthy. jpg
m Fig_102_Aflatoxin.jpg

This structure allows users to easily copy or back up specific days or batches without needing
special software.

2.5 Access control and security

Although the system will work in a physically secure area (inside the factory), software security
measures will be taken to prevent data integrity and misuse.

Authentication: A simple login screen will greet at application startup. Users (Operator,
Supervisor) will log in with a PIN or password defined for them.

Role-Based Access Control (RBAC):

° Operator: Can only perform "Start/Stop Scanning", "Reset", and "Get Report"
operations. Cannot change settings or delete past records.

° Supervisor: Has all authorities. Can change camera settings, model confidence
thresholds, delete old data.

Data Security: Passwords will never be stored as plain-text in the database; they will be kept
hashed with secure algorithms like PBKDF2 or SHA-256. CSV reports and database files will
be presented in "read-only" mode by the application or protected with file system permissions
to prevent accidental modification or deletion by the operator.



Figion System\

-LZZT--‘:Jiew Live Feea-_:)

~ -i""-_‘:u-'iew Live Stat;_-_'_:;-
N
A

_‘_\_‘_‘_\_'_‘_‘—-—._. —————
Operator (_ Start/Stop S5can
() -i"'-ifxpnrt Reports {CSVj:}
_I_ _._,_,_.—-—-"_'_?""--___ -

P
# ', “"“—-_.__‘__'
Supervisor (Admin) T
{ _Cnnfigure Threshnlds___}-

R

R S——

(_Manage Data haaé:,-

-
-

Figure 4: Use Case Diagram defining user roles (Operator vs. Supervisor) and their access privileges.

2.6 Global software control

The application's lifecycle and workflow are controlled by an event-driven state machine.
States and Transitions:

Boot: Application opens. Configuration files are read. Database connection is checked.
HW Check: Pings are sent to Camera and Relay card.

e Success: Transitions to Idle state.
e Failure: Transitions to Error state and "Camera Not Found" warning is shown to user.



Idle: System waits for command from user. Camera preview is active but recording/inference is
not performed. UV lights are off (or in standby mode).

Scanning: Transitioned when "Start" button is pressed.

e Action: UV Lights are turned ON. Inference Thread is activated. Images start being
recorded.

Paused: Transitioned when "Pause" button is pressed.

Action: Inference is stopped. UV lights are (optionally) turned off.

Shutdown: Triggered when application is closed.

Action: All hardware connections are released (Camera Release), UV lights are forcibly
turned OFF, database connection is securely closed.

Exception Handling: To prevent the system from crashing in unexpected situations (e.g.,
camera cable being pulled during operation), a global try-catch (try-except in Python) block
will wrap the main loop. In case of an error, the system will transition to a safe state (UV lights
off), write the error to an error.log file, and show an understandable message to the user.



_?

[ Initialize System |

r

Hardware Check?

ra "‘\\ ra "‘\\
[ Show Error Message | [ Show "Ready" State |

. Ty
| User Clicks "Start" |

g
,

SUCCess

-
-

' ™y
| Capture Frame |

v

2

' b
[ Pre-process Image ]
., o

e

o Ty
| Run YOLO Inference |

Is Contaminated?

ks Y e Y
Draw RED Box ] [ Draw GREEN Box ]
Ne_ ot el

-

e Y e h
[ Increment Defect Count | [ Increment Healthy Count |
\ AN =4

| Log "Aflatoxin” | Log "Healthy" |
L v L _4
}i j<
| Update Ul Display |

v

|, Save to Database 1|
p oy

—

Stop Button Mot Clicked?

v

[/ Export Session Data \]
. A

Figure 5: Activity Diagram illustrating the global control flow and decision logic of the inspection

process.



2.7 Boundary conditions

To ensure system stability, edge cases will be managed as follows:

Cameraless Startup: If the system cannot find the camera at startup, it will continue to start
but will warn the user by disabling the "Start" button.

Disk Full: If the disk space falls below a critical level during image recording, the system will
stop image recording (only keeping a text log) and give the operator an audible/visual warning.

Excessive Conveyor Speed: If the conveyor belt flows faster than the model's processing
speed (queue filling up), the system will prioritize processing the current frame by dropping the
oldest frame (Frame Dropping). This prevents latency from accumulating and causing the live
image to lag behind.

No Detection: Since there will be no fluorescent light in "clean" figs, "no object detection" is
an expected situation. If there is no fluorescence in the image despite the presence of figs, the
system should record this as "Healthy" and not as "Error". For this, the model may need to
recognize not only the "Aflatoxin" stain but also the "Fig" itself, or the presence of the fig may
need to be confirmed through image processing (blob detection).



3. Subsystem services

3.1 Vision Services

initialize camera(camera id): Loads the camera driver and sets the parameters (exposure, size).
capture frame(): Returns a snapshot from the camera.

run_inference(frame): Retrieves an image frame, passes it through the YOLO model, and
returns a list of detected objects ([ {class: 'Aflatoxin', confidence: 0.98, bbox: [...]}]).

release resources(): Safely disconnects the camera connection.

3.2 Control Services

connect_relay(port): Opens a serial connection to the relay board.
toggle uv_light(state: bool): Turns the lights on with the True parameter and off with False.
get_hardware_status(): Queryes the health status of the hardware (Connected/Disconnected).

3.3 Data Services

start new_session(user_id): Creates a new session record and returns session_id.
save_inspection_record(data_object): Writes a single analysis result to the database.
queue_image save(image, metadata): Sends the image to the background thread to write it to
disk.

export_data(session_id, format='csv'): Exports the data of the specified session as a CSV file.
get live statistics(): Queries current statistics (Total, Errors, %) for the counters in the
interface.

3.4 Interface Services (UI Service)

update video feed(qimage): Draws the processed image to the video component on the screen.
refresh_counters(stats_dict): Updates the statistics widgets.

display_error(message): Opens an error message window for the user.

on_start stop clicked(): Captures the user's start/stop action and passes it to the Control
Service.



A, s
Operator Ul Layer Control Layer I‘u‘lsmn w::-rker] [ Data Layer‘

Click "Start Scan”

o
o

start_camera_stream() .

| initiate_scan()

: Eall

i loop / [Every Frame] ! ! |
! ! ! I capture_frame() !
: ! ! . run_yolo_inference() |
E E E{ return result E E
| par [Parallel Tasks] | | .
! '€ update video display() ! ! !
! < update_counters() : : !
i i I save_record() ! .
l ! : : =
| Click "Stop" N | | |
] ’I ] ] ]
! | stop_scan() o | :
I ] rl ] I

ope%rator Ul Layer Control Layer Ivision w::-rker] [ Data Layer
// \\.

Figure 6: Sequence Diagram detailing the interactions between subsystems during a scanning session.



4. Glossary

Aflatoxin: A family of toxins produced by certain fungi that are found on agricultural crops
such as maize (corn), peanuts, cottonseed, and tree nuts.

HPLC : An advanced laboratory analysis method used to separate, identify, and quantify the
components in a mixture. A liquid sample is forced through a column filled with very fine
particles at high pressure. Each substance passes through the column at different speeds,
allowing for separation.



5. References

1. Kuru incirlerde AFLATOKSIN ve okratoksin a bulasisinin &nlenmesi. (n.d.).
https://www.tarimorman.gov.tr/GKGM/Belgeler/Uretici_Bilgi Kosesi/Egitim/Hijyen Kilavuz/
kuru incir_aflatoksin_okratoksin a onleme azaltma.pdf

2. Omer Baris Ozliioymak. (2014). Development of an UV-Based Imaging System for
Real-Time Aflatoxin Contaminated Dried Fig Detection and Separation. Tarim Bilimleri
Dergisi/Ankara Universitesi Ziraat Fakiiltesi Tarim Bilimleri Dergisi, 20(3), 302-302.
https://doi.org/10.15832/tbd.87873

3. Kilig, C., Ozer, H., & Inner, B. (2024). Real-time detection of aflatoxin-contaminated
dried figs using lights of different wavelengths by feature extraction with deep learning. Food

Control, 156, 110150. https://doi.org/10.1016/j.foodcont.2023.11015

4. Ultralytics. (n.d.). YOLOI1 vs. YOLOVS: Performance Comparison and Benchmarks.
Ultralytics Documentation. https://docs.ultralytics.com/compare/yolo11-vs-yolov8/



https://doi.org/10.1016/j.foodcont.2023.11015
https://docs.ultralytics.com/compare/yolo11-vs-yolov8/

	1. Introduction 
	1.1 Purpose of the system 
	1.2 Design goals 
	1.3 Definitions, acronyms, and abbreviations 
	1.4 Overview 

	2. Proposed software architecture 
	2.1 Overview 
	 
	 
	2.2 Subsystem decomposition 
	2.2.1 Vision Subsystem 
	2.2.2 Control Subsystem 
	2.2.3 Data Management Subsystem 
	2.2.4 UI Subsystem 

	2.3 Hardware/software mapping 
	2.4 Persistent data management 
	2.5 Access control and security 
	2.6 Global software control 
	2.7 Boundary conditions 

	 
	 
	 
	 
	 
	 
	3. Subsystem services 
	3.1 Vision Services 
	3.2 Control Services 
	 

	3.3 Data Services 
	3.4 Interface Services (UI Service) 

	 
	 
	 
	4. Glossary 
	5. References 

